Abstract

Abstract Mass transfer phenomena in membrane fuel cells are complex and diversified because of the presence of complex transport pathways including porous media of very different pore sizes and possible formation of liquid water. Electrochemical impedance spectroscopy, although allowing valuable information on ohmic phenomena, charge transfer and mass transfer phenomena, may nevertheless appear insufficient below 1 Hz. Use of another variable, that is, back pressure, as an excitation variable for electrochemical pressure impedance spectroscopy is shown here a promising tool for investigations and diagnosis of fuel cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.