Abstract

A nanocatalyst coating was prepared at surface of a glassy carbon electrode by electropolymerization of pyrrole by cycling the electrode potential between −0.8 and 0.8 V (vs. Ag/AgCl). Then, polypyrrole film was potentiostatically coated with platinum nanoparticles at constant potential of −0.2 V (vs. Ag/AgCl). The resulting electrode was denoted as GCE/PPy/Pt. This modified electrode was characterized by IR, SEM, TEM and EDX. The electrocatalytic oxidation of ethanol at the GCE/PPy/Pt has been investigated using cyclic voltammetric and chronoamperometric methods. The effects of various parameters on electrocatalytic oxidation of the ethanol, such as the thickness of PPy film, the amount of platinum nanoparticles, ethanol concentration, potential scan rate and working potential limit in anodic direction, were investigated. The kinetic of the ethanol oxidation is discussed on the GCE/PPy/Pt. The stability and reproducibility of this modified electrode were also studied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.