Abstract

This study describes an effective method to prepare highly dispersed palladium nanoparticles supported onto single-walled carbon nanotubes (SWNTs) with high electrocatalytic activity toward the oxidation of ethanol. This method is essentially based on electrochemical post-treatment of Pd-based infinite coordination polymer (ICP). The Pd-based ICP is synthesized through the coordination reaction between Zn(2+) and metallo-Schiff base (MSB) to form Zn-MSB-Zn (ZMZ) ICP that precipitates from ethyl ether. The as-formed Zn-MSB-Zn ICP is then subjected to an ion-exchange reaction with Pd(2+) to obtain the Zn-MSB-Pd (ZMP) ICP. To prepare Pd/SWNT nanocomposite, the ZMP ICP is mixed into the SWNT dispersion in N-dimethylformamide (DMF) to form a homogeneous dispersion that is then drop-coated onto a glassy carbon (GC) electrode. Electrochemical post-treatment of ZMP ICP to form Pd/SWNT nanocomposite is thus performed by polarizing the coated electrode at -0.2 V for 600 s in 0.5 M H2SO4. The results obtained with scanning electron microscopy (SEM) and transmission electron microscopy (TEM) reveal that the resulting Pd nanoparticles are highly dispersed onto SWNTs and the particles size are small and narrowly distributed (2.12 ± 0.32 nm). X-ray photoelectron spectroscopy (XPS) analysis shows that, after the electrochemical post-treatment, no detectable ZMP ICP precursors are left on the surface of SWNTs. The electrocatalytic activity of the as-formed Pd/SWNT nanocomposite toward ethanol oxidation is investigated by cyclic voltammetry and chronoamperometry. The results show that the Pd/SWNT nanocomposite prepared here shows a more negative potential and higher mass catalytic activity, as well as higher stability for the oxidation of ethanol than the commercial Pd/C catalyst. This work demonstrates a novel approach to the formation of ultrasmall and highly dispersed Pd/SWNT nanocomposite with enhanced electrocatalytic activity toward ethanol oxidation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call