Abstract

Utilizing nitrate from wastewater as a N-source for ammonia synthesis via electrocatalysis is of significance for both environmental protection and ecological nitrogen cycle balance, which requires high-performance electrocatalysts to drive selective nitrate-to-ammonia transformation. In this work, an electrochemical postmodification strategy was developed to regulate the surface structure of presynthesized Cu nanodendrites at the atomic level. A combination of physicochemical characterization and electrochemical study demonstrates that such a treatment could induce surface Cu atom rearrangement and result in increased electrochemically active surface area and high density of surface-active sites, disclosing a high electrocatalytic nitrate-to-ammonia capability, with an optimal NH3 yield rate of 0.2238 mmol h-1 cm-2 and a corresponding Faradaic efficiency of 94.43%. This study may provide a guiding design avenue for atomic arrangement engineering of metallic nanocrystals via electrochemical postmodification for nitrate reduction reaction and other energy conversion electrocatalysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.