Abstract

Research on II–VI semiconducting compounds during the last two decades has been motivated by possible device applications such as thin film transistors, photodetectors and solar energy converters. In particular, the direct gap n-type semiconductor CdSe, has remained the subject of studies aimed at developing efficient photovoltaic and photoelectrochemical cells. For the low-cost production of polycrystalline CdSe layers, many noteworthy methods have been employed, such as: vacuum deposition, spray pyrolysis, chemical bath deposition and electrodeposition [1–5]. The best reported performances of photoelectro-chemical cells using CdSe films obtained by these methods, in contact with an aqueous polysulfide electrolyte and under solar or simulated solar radiation, have varied between 5 and 7% [6,7].

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.