Abstract

In this report, we synthesized SnO2/modified graphite anode composite material by a simple reflux method using SnCl4·5H2O as tin source and modified graphite as carbon source. The as-obtained composite was investigated with the help of X-ray diffraction (XRD), scanning electron microscopy (SEM) and galvanostatic cycling tests. The results show that the composite has a wave-shaped fold structure and the SnO2 nanoparticles on it have an average size of about 50 nm. Compared to pure modified graphite, the SnO2/modified graphite exhibits a better electrochemical performance with a reversible specific capacity of 581.7 mAh g−1 after 80 cycles, owing to high mechanical stress and elasticity of modified graphite could hinder the volume effect of SnO2 nanoparticles during the Li+ insertion/extraction process. All these favourable characters reveal that the composite is a great potential anode material in high-performance lithium ion batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.