Abstract

The present study highlights the electrochemical performance of two series of fluorinated graphites used as the cathode in primary lithium batteries. These compounds were prepared under fluorine gas at room temperature using a catalytic atmosphere made of boron or chlorine fluoride, and then thermally treated between 100 and 600 °C. The electrochemical properties are correlated to a complete physico-chemical characterization, already performed by XRD, NMR, FT-IR and EPR. In particular, important parameters are taken into account: C–F bonding, carbon hybridization, fluorine content (i.e. F/C ratio) and amount of intercalated catalyst residues. It is shown that the average discharge potential of fluorinated graphite used in primary lithium batteries can be predicted owing to the chemical shift values ( δ C–F) obtained by solid 13C NMR. On the other hand, the higher capacity values are achieved for low temperature fluorinated graphite treated at the highest temperatures, i.e. for high fluorination level. The electrochemical performance study of these materials is completed by the study of the effect of simulated storage. The differences between the various samples during electrochemical tests and those observed using different electrolytes are discussed. Fluorinated graphites obtained with a chlorine catalyst or post-treated at temperatures higher than 450 °C are unaffected by ageing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.