Abstract
Solid-state batteries (SSBs) have been widely studied as next-generation lithium-ion batteries (LiBs) for many electronic devices due to their high energy density, stability, nonflammability, and chemical stability compared to LiBs which consist of liquid electrolytes. However, solid electrolytes exhibit poor electrochemical characteristics due to their interfacial properties, and the sintering process, which necessitates high temperatures, is an obstacle to the commercialization of SSBs. Hence, the aim of this study was to improve the interfacial properties of the lithium tantalum phosphate (LTPO) solid electrolyte by adding succinonitrile (SN) on the interface of the LTPO particle to enhance ionic conductivity without the sintering process. Electrochemical impedance spectroscopy (EIS), the Li symmetric cell test, and the galvanostatic cycle test were performed to verify the performance of the SN-containing LTPO composite electrolyte. The LTPO composite solid electrolyte exhibited a high ionic conductivity of 1.93 × 10-4 S/cm at room temperature (RT) compared to the conventional LTPO. Also, it showed good cycle stability, and low interfacial resistance with Li metal, ensuring electrochemical stability. On the basis of our experimental results, the performance of solid electrolytes could be improved by adding SN and lithium salt. In addition, the SN can be used to fabricate the solid electrolytes without the sintering process at high temperatures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.