Abstract
A three-dimensional Li4Ti5O12/carbon nanotubes/graphene composite (LTO-CNT-G) was prepared by ball-milling method, followed by microwave heating. The as-prepared LTO-CNT-G composite as anode material in lithium-ion battery exhibited superior rate capability and cycle performance under relative high current density compared with that of Li4Ti5O12/CNTs (LTO-CNT) and Li4Ti5O12/graphene (LTO-G) composites. Graphene nanosheets and CNTs were used to construct 3D conducting networks, leading to faster electron transfer and lower resistance during the lithium ion reversible reaction, which significantly enhanced the electrochemical activity of LTO-CNT-G composite. The synergistic effect of graphene and CNTs can greatly improve the rate capability and cycling stability of Li4Ti5O12-based anodes. The LTO-CNT-G composite exhibited a high initial discharge capacity of 172 mAh g−1 at 0.2 C and 132 mAh g−1 at 20 C, as well as an excellent cycling stability. The electrochemical impedance spectroscopy demonstrated that the LTO-CNT-G composite has the smallest charge-transfer resistance compared with the LTO-CNT and LTO-G composites, indicating that the fast electron transfer from the electrolyte to the LTO-CNT-G active materials during the lithium ion intercalation/deintercalation owing to the three-dimensional networks of graphene and CNTs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.