Abstract

In spite of excellent electrochemical properties, nitrogen-doped carbon nanofibers (NCNFs) have rarely been studied in the field of electroanalysis. In this work, we investigated the electrochemical properties and biosensing performance of NCNFs prepared by a newly proposed approach. The as-obtained NCNFs present a unique free-standing structure with high flexibility which could be convenient for electrode modification. Electrochemical measurements of typical redox species including [Ru(NH3)6]3+/2+, [Fe(CN)6]3-/4-, [Fe(H2O)6]3+/2+, and dopamine indicate that the NCNFs have a larger surface area and faster electron transfer rate compared with carbon nanofibers (CNFs). The presence of high content of pyrrolic-N and abundant defective sites in NCNFs leads to an obvious positive shift of peak potential for oxygen reduction at NCNFs relative to that obtained at CNFs. The unique structure and properties greatly enhance the electrochemical performance of NCNFs. The glucose biosensor based on glucose oxidase/NCNFs shows linear ranges of 0.2-1.2 mM at -0.42 V and 0.05-3 mM at 0.40 V both with high stability. These results suggest that the NCNFs could be a convenient and stable platform for electrochemical biosensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.