Abstract

AbstractCuBi2O4 nanoparticles were prepared via a polyacrylamide gel route. Field-emission scanning electron microscopy observation shows that the particles are shaped like spheres and have an average particle size of ∼230 nm. Ultraviolet–visible diffuse reflectance spectroscopy reveals that the particles have a bandgap energy of 1.88 eV. The electrochemical performance of the sample was investigated by means of cyclic voltammetry, galvanostatic charge–discharge, and electrochemical impedance spectroscopy in 2 M KOH, 6 M KOH, and 2 M NaOH electrolytes at different temperatures. It is demonstrated that the temperature has an important effect on the electrochemical performance of the sample, and relatively higher specific capacitance is observed at 45 °C, reaching 1 458 F g−1 in 2 M KOH electrolyte at a current density of 2 A g−1. In addition, the sample exhibits an increased capacitance in a higher-concentration electrolyte, but its charge–discharge cycling stability is decreased. Moreover, it is found that the sample exhibits relatively larger specific capacitance in KOH electrolyte than in NaOH electrolyte.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.