Abstract

Abstract In this paper, we report the fabrication of activated carbon nanofibers/cobalt ferrite (CNF/CoFe2O4) composites by electrospinning and hydrothermal methods for comparative study of electrochemical properties. The structural, morphological, and compositional analyses of the synthesized composites were examined using X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy. CNF/CoFe2O4 electrodes were investigated for electrochemical behavior using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic charge–discharge (GCD). The results showed that hydrothermally synthesized CNF/CoFe2O4 composite exhibited the specific capacitance 188.36 F/g, whereas electrospun CNF/CoFe2O4 composite resulted the specific capacitance 106.59 F/g at lowest current density 0.5 A/g. 80% capacitance retention of CNF/CoFe2O4 prepared by hydrothermal as compared with 60% capacitance retention of CNF/CoFe2O4 prepared by electrospinning. These results concluded that CNF/CoFe2O4 electrode obtained by hydrothermal exhibited comparatively excellent electrochemical performance and found its suitability as electrodes for supercapacitors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.