Abstract

Commercial activated-carbon used as the electrode material of an electric double-layer capacitor (EDLC) was posttreated with various acids and alkalis to increase its capacitance. The carbon samples prepared were then heat-treated in order to control the amount of acidic functional groups formed by the acid treatments. Coin-type EDLC cells with two symmetric carbon electrodes were assembled using the prepared carbon materials and an organic electrolyte. The electrochemical performance of the EDLC was measured by galvanostatic charge-discharge, cyclic voltammetry, and electrochemical impedance spectroscopy. Among the various activated carbons, the carbon electrodes (CSsb800) prepared by the treatments of coconutshell-based carbon activated with NaOH and <TEX>$H_3BO_5$</TEX>, and then heat treated at <TEX>$800^{\circ}C$</TEX> under a flow of nitrogen gas, showed relatively good electrochemical performance. Although the specific-surface-area of the carbon-electrode material (<TEX>$1,096m^2/g$</TEX>) was less than that of pristine activated-carbon (<TEX>$1,122m^2/g$</TEX>), the meso-pore volume increased after the combined chemical and heat treatments. The specific capacitance of the EDLC increased from 59.6 to 74.8 F/g (26%) after those post treatments. The equivalent series resistance of EDLC using CSsb800 as electrode was much lower than that of EDLC using pristine activated carbon. Therefore, CSsb800 exhibited superior electrochemical performance at high scan rates due to its low internal resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.