Abstract

A new ionic liquid crystal (ILC) bearing a biphenyl core and a terminal imidazolium moiety was synthesized which exhibited two enantiotropic smectic A mesophases having a wide phase range. Interestingly one of these mesophases exhibited the features of a biaxial phase. A composite electrode containing the synthesized ILC and carbon paste (CP) was fabricated and employed for the successful electrochemical detection of a clinically important analgesic drug, paracetamol. The ILC-CP composite electrode displayed an enhanced current response due to a versatile combination of properties namely, good ionic conductivity, increased edge-site defects and excellent electrocatalytic activity. The composite electrode responded quickly upon addition of paracetamol and the peak current of anodic oxidation enhanced at lower over potential compared to the carbon paste electrode (CPE). Differential pulse voltammetric (DPV) experiments for the detection of paracetamol yielded acceptable linear range from 0 to 120 μM with a good detection limit of 2.8 μM. Interference test results showed anti-interfering ability in presence of a mixture of interferents. The electrode stability was evaluated from DPV current response and 92.6% current was retained after one month which revealed the excellent stability. The electrode was successfully applied for the direct determination of paracetamol in pharmaceutical formulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.