Abstract
The fiber-shaped supercapacitor is a promising energy storage device in wearable and portable electronics because of its high flexibility, small size, and light weight. However, most of the reported fiber-shaped supercapacitors have exhibited low capacitance and energy density due to the limited surface area between the two fiber electrodes and operating voltage range. Herein, we successfully developed a coaxial fiber-shaped asymmetric supercapacitor (CFASC) made from MnO2/CNT-web paper as a cathode coupled with Fe2O3/carbon fiber as an anode with a high operating voltage of 2.2 V. The prepared CFASC device showed a high volumetric energy density of 0.43 mWh cm−3 at a power density of 0.02 W cm−3, which is comparable to those of previously reported fiber-shaped supercapacitors. Additionally, CFASC exhibited good rate capability, long cycle life, and high volumetric capacitance (0.67 F cm−3) with excellent flexibility. The promising performance of CFASC illustrated its potential for portable and wearable energy storage devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.