Abstract
LiNi 1/2Mn 1/2O 2 electrodes with layered structure were synthesized by solid-state reaction between lithium hydroxide and mixed Ni,Mn oxides obtained from co-precipitated Ni,Mn carbonates and hydroxides and freeze-dried Ni,Mn citrates. The temperature of the solid-state reaction was varied between 800 and 950 °C. This method of synthesis allows obtaining oxides characterized with well-crystallized nanometric primary particles bounded in micrometric aggregates. The extent of particle agglomeration is lower for oxides obtained from freeze-dried Ni,Mn citrates. The local Mn 4+ surrounding in the transition metal layers was determined by X-band electron paramagnetic resonance (EPR) spectroscopy. It has been found that local cationic distribution is consistent with α,β-type cationic order with some extent of disordering that depends mainly on the precursors used. The electrochemical extraction and insertion of lithium was tested in lithium cells using Step Potential Electrochemical Spectroscopy. The electrochemical performance of LiNi 1/2Mn 1/2O 2 oxides depends on the precursors used, the synthesis temperature and the potential range. The best electrochemical response was established for LiNi 1/2Mn 1/2O 2 prepared from the carbonate precursor at 900 °C. The changes in local environment of Mn 4+ ions during electrochemical reaction in both limited and extended potential ranges were discussed on the basis of ex situ EPR experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.