Abstract

W-doped La0·5Sr0·5Fe0·9W0·1O3-δ (LSFW) was prepared and evaluated as a symmetric electrode for solid oxide fuel cells (SSOFCs). Phase and structural stability of LSFW under both reducing and oxidizing atmospheres was studied. The oxygen reduction reaction (ORR) and hydrogen oxidation reaction (HOR) mechanisms were investigated by using electrochemical impedance spectra (EIS) and distribution of relaxation times (DRT). Electrode polarization resistance (Rp) of LSFW are 0.08 and 0.16 Ω cm2 in air and wet hydrogen at 800 °C, respectively. DRT results indicate that the rate-limiting step of LSFW at 800 °C in cathodic conditions and anodic conditions are related to oxygen diffusion and hydrogen adsorption/diffusion, respectively. A La0·8Sr0.2Ga0.8Mg0·2O3-δ (LSGM) electrolyte-supported single cell using LSFW electrodes shows a maximum power density of 617.3 mW cm−2 at 800 °C with considerable stability and reversibility, which enables LSFW a promising SOFCs symmetric electrode material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.