Abstract

Electrochemical oxidation processes on Ni electrodes in propylene carbonate electrolytes were investigated by using cyclic voltammetry, x‐ray photoelectron spectroscopy, and in situ Fourier transform infrared spectroscopy. The results of these analyses suggest that Ni electrodes, electrolyte salts, and solvent are oxidized at a greater anodic potential than 4.2 V vs. . When propylene carbonate (PC) electrolyte containing , or was used, a large amount of Ni fluorides and oxides formed on the Ni electrodes and became inactive in response to Ni oxidation. The Fourier transform infrared measurement showed that the oxidation of PC in these electrolytes is enhanced by the formation of the above‐mentioned Ni compounds in the first scan. On the other hand, inactivation was not observed for PC electrolytes containing . Correspondingly, the oxidation of PC in this electrolyte was more suppressed than that in the other three electrolytes. When PC containing was used as an electrolyte, the formation of Ni oxides was observed as well as the active oxidation of PC. This result indicates that Ni oxides are actively involved in the electrochemical oxidation of PC. Thus, electrochemical oxidation processes on Ni electrodes in various PC electrolytes can be explained by the oxidation of Ni electrodes in association with anion decomposition, which determines a type of products formed on Ni electrodes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.