Abstract

5-Chloro-2-(2,4-dichlorophenoxy) phenol (triclosan, TCS) is a potential threat to the environment and human health, and it needs appropriate approaches for its removal. A new modified PbO2 electrode, Al-PbO2 based on TiO2 nanotubes (NTs), was successfully prepared for TCS electrochemical oxidation. Scanning electron microscopy indicated a compact coating layer on the anode. TCS removal on Ti/TiO2 NTs/Al-PbO2 anode followed a pseudo-first-order kinetics. The electrical efficiency per log order (EE/O) for oxidation was decreased from 14.79 to 12.90 kWh m-3 order-1 after TiO2 NTs on Ti material and decreased to 8.27 kWh m-3 order-1 after Al3+ doping. The effects of current density, pH value, and electrolyte concentration were investigated. Intermediate organo-chlorinated compounds were detected by gas chromatography coupled with mass spectrometry, high-performance liquid chromatography, and ion chromatography. Finally, ecotoxicity assessment revealed that the degradation of TCS by electrooxidation system with Ti/TiO2 NTs/Al-PbO2 anode could yield a smaller toxicity compared with parent compounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.