Abstract

The electrochemical behaviour of the antitumor drug mitomycin C (MMC) was investigated on carbon paste electrode over a wide pH range and using voltammetric techniques. The MMC undergoes diffusion-controlled irreversible oxidation in two different processes, one pH-independent for 2.2˂pH˂4.5 and one pH-dependent for 4.5˂pH˂12.0, and does not involve the formation of any electroactive oxidation product. Upon incubation in different pH electrolytes, chemical degradation of MMC was electrochemically detected by the appearance of a new oxidation peak at a lower potential. The chemically degraded MMC undergoes an irreversible, pH-dependent oxidation for 3.4˂pH˂5.4, and its redox products are reversibly oxidised. The spontaneous degradation of MMC in aqueous solution was confirmed by UV–Vis spectrophotometry. Moreover, a multilayer dsDNA-electrochemical biosensor was used to evaluate the interaction between MMC and DNA. The results have clearly proven that MMC interacts and binds to dsDNA strands immobilized onto a glassy carbon electrode surface and its metabolite(s) cause oxidative damage to DNA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call