Abstract
AbstractTannery wastewater was treated by an electrochemical oxidation method using Ti/Pt, Ti/PbO2 and Ti/MnO2 anodes and a Ti cathode in a two‐electrode stirred batch reactor. The changes in colour concentration, chemical oxygen demand (COD), ammonia (NH4+), sulfide and total chromium have been determined as a function of treatment time and applied current density. Gas chromatography–mass spectrometry (GC–MS) analysis, performed on the wastewater samples before and after treatment, as well as on foam samples, is reported. Anode efficiency, rate constants and energy consumption were estimated and discussed. The efficiency of Ti/Pt was 0.802 kgCOD h−1 A−1m−2 and 0.270 kgNH4+ h−1 A−1m−2, and the energy consumption was 5.77 kWh kg−1 COD and 16.63 kWh kg−1 of NH4+. The order of efficiency of anodes was found to be Ti/Pt ≫ Ti/PbO2 > Ti/MnO2. The results indicate that the electro‐oxidation method could be used for effective oxidation of tannery wastewater and a final effluent with substantially reduced pollution load can be obtained.© 2001 Society of Chemical Industry
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Chemical Technology & Biotechnology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.