Abstract

This paper presents the application of a boron-doped diamond (BDD) electrode in the electrochemical oxidation of stable organic compounds. The BDD electrode exhibits a high anodic potential, generating high oxidation state radicals that facilitate the oxidation of tough organic compounds. In this study, the electrochemical oxidation approach is tested in the cleaning of residual organics left on a liquid crystal display (LCD) device. Results indicate that residual organic compounds adhered on an LCD device are decomposed completely in the experiment. It has been shown that the electrolyte temperature and concentration strongly affect the oxidation of tough residual organics such as phenylcyclohexane. Optimal cleaning performance is obtained at an electrolyte concentration of and a temperature between 50 and . The stability test of a BDD electrode measured by means of X-ray diffraction indicates that the BDD electrode remains unchanged after of operation. Moreover, the electrochemical oxidation technique has dramatically minimized the use of the ozone depleting substance commonly used as the organic solvent in the LCD manufacturing process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.