Abstract

Electrochemical oxidation of ethanol at nickel electrodes has been studied in 1 M KOH solution containing 0.20M ethanol using electrochemical impedance spectroscopy. Equivalent circuits have been worked out by simulating the impedance data, and the results were used to model the oxidation of ethanol as well as the passivation of the electrode. The maximum rate of oxidation of <TEX>$Ni(OH)_2$</TEX> to NiOOH was observed at about 0.37V vs. Ag/AgCl reference electrode, while the maximum rate of ethanol oxidation at the Ni electrode was observed at about 0.42V, The charge-transfer resistance for oxidation of the electrode itself became smaller in the presence of ethanol than in its absence. These results suggest that the <TEX>$\beta-Ni(OH)_2/\beta-NiOOH$</TEX> redox couple is acting as an effective electron transfer mediator far ethanol oxidation. The kinetic parameters also were obtained by the experimental and simulated results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.