Abstract

The electrochemical oxidation of D-fructose solution was studied using a Box–Behnken design. Seventeen batch runs of electrochemical oxidation were conducted based on three sets of operating conditions generated using Design-Expert software. The effects of D-fructose concentration, applied voltage and NaOH concentration on oxidation percentage and oxidation rate were studied. As revealed by ANOVA, the D-fructose and NaOH concentrations significantly affected the oxidation percentage, and the applied voltage and NaOH concentration significantly affected the oxidation rate. Functional models for the oxidation percentage and oxidation rate were generated and reported. The electrochemical oxidation of D-fructose was optimised by maximising the D-fructose concentration and minimising the applied voltage and NaOH concentration. The models were validated by comparing the adjusted optimised solution with the experimental data. A 62.78% electrochemical oxidation percentage and an oxidation rate of 12.20 mM/L h were achieved using 82% D-fructose with 0.14M NaOH and a 10 V applied voltage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.