Abstract

In the current investigation, the electrochemical oxidation of caffeic acid (CA) in the absence and presence of 1,4-benzenediboronic acid (BDA) was studied. The voltammetric study indicates that CA (1) oxidized to its o-benzoquinone (1ox) within a two-electron process. In basic pHs, the electrochemically generated 1ox is unstable and participates in the dimerization reaction. The results indicate that BDA reacts with CA, and a complex is produced. By the use of cyclic voltammetry, the electrochemical behavior of CA–BDA complex has been studied in aqueous solution. It was found that the electrochemical mechanism of the produced CA–BDA complex is CEC. Also, the electrochemical study of the CA–BDA complex was studied in the presence of glucose. The results show that the tendency of BDA to form the complex with CA decreases due to the addition of glucose, and the anodic peak of CA–BDA complex decreases with the increasing concentration of glucose.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.