Abstract

ABSTRACTNew emissions regulations will increase the need for compact, inexpensive sensors for monitoring and control of automotive exhaust gas pollutants. Species of interest include hydrocarbons, carbon monoxide, and oxides of nitrogen (NOx). The current work is directed towards the development of fast, high sensitivity electrochemical NOx sensors for automotive diesel applications. We have investigated potentiometric NO sensors with good sensitivity and fast response when operated in 10% O2. The sensors consist of yttria-stabilized zirconia substrates attached with NiCr2O4 sensing electrodes and Pt reference electrodes. A composite NiCr2O4:Rh sensing electrode is shown to give significantly faster response than NiCr2O4 alone. The exact role of the Rh in enhancing the response speed is not clear at present. However, the Rh appears to accumulate at the contacts between the NiCr2O4 particles and may enhance the inter-particle electronic conduction. Ongoing testing of these sensors is being performed to elucidate the sensing mechanisms and to quantify cross sensitivity to, for example, NO2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call