Abstract

Electrochemical reduction is effective to remove nitrate but byproducts such as ammonia and nitrite would need chloride addition for indirect oxidation to nitrogen gas. Herein, electrochemical nitrate reduction was investigated to remove nitrate from a mimicked reverse osmosis (RO) brine containing chloride that eliminates the need for external chloride addition. Both Cu/Zn and Ti nano cathodes exhibited the best performance of nitrate removal with >97 % removal in either Na2SO4 or NaCl electrolyte, although with different products. Complete nitrate reduction to nitrogen gas was realized in the RO brine whose complex composition decreased the electrode efficiency, for example from 71.4 ± 0.2%–49.4 ± 0.3 % with the Cu/Zn cathode after 5 cycles of operation. Magnesium was recovered at the same time of nitrate removal and the purity of Mg(II) could reach 96.8 ± 2.0 % after proper pH pre-treatment. In a preliminary adsorption study, a key byproduct – chlorate was reduced by 49.8 ± 2.7 % after 3-h adsorption by 100 g L−1 activated carbon. These results have demonstrated the simultaneous electrochemical nitrate removal and resource recovery from a complex water like a RO brine and provided new information such as byproduct management and electrode deterioration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call