Abstract
5-Fluorouracil (5-FU) is widely used in the treatment of various cancers, necessitating accurate and sensitive detection techniques. Hybrid materials, combining organic and inorganic components, offer superior electrochemical characteristics, including enhanced conductivity and stability. Herein, NiO nanorods (NiONRs) were synthesized using Mangifera indica leaves extract and decorated with chitosan curcumin analog Schiff base (Cs-Cur-A). The characterization of the NiONRs and Cs-Cur-A were investigated through different techniques including FT-IR, 1HNMR, XRD, SEM, and EDX. A sensitive and selective electrochemical sensor to determine 5-FU was elucidated using a Cs-Cur-A/NiONRs modified glassy carbon electrode (GCE). The anodic peak current of 5-FU was greatly enhanced at the Cs-Cur-A/NiONRs/GCE with pH 7.0 and a scan rate of 50 mV s−1. According to chronoamperometric measurements, the value of diffusion coefficient (D) was estimated to be 2.96 × 10−6 cm2 s−1. Using differential pulse voltammetry (DPV), the fabricated sensor exhibits a wide linear range (0.1–150.0 μM) with a low limit of detection (21.75 nM). Moreover, the proposed sensor was successfully applied to the detection of 5-FU in blood serum and urine samples with high reproducibility, repeatability, and selectivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.