Abstract
Electrical conductivity is one of the properties required for an active material, and it is extremely essential to exert its potential. In the present study, the strategy of coating a metal at a single particle level by an electroless deposition method was applied to enhance the cycling performance of phosphorus-based negative electrodes for Na-ion batteries. The deposition morphology and composition of the Ni coating layer were characterized by field-emission scanning electron microscopy, scanning transmission electron microscopy, and X-ray diffraction. In the 5 wt % Ni coating, an amorphous Ni layer of several nanometers thickness was homogeneously formed on the phosphorus surface, whereas a shell layer having a 200 nm thickness was formed in the order of Ni12P5, NiP2, NiP3, and metallic Ni from the surface toward the center in the 30 wt % Ni coating. Electrochemical impedance spectroscopic measurements clarified that the good electron transport proceeded throughout the developed conduction pathway to promote the phase transition to trisodium phosphide (Na3P), leading to a high reversible capacity for phosphorus; the as-prepared black phosphorus showed only a reversible capacity of 140 mA h g–1 at the 60th cycle, whereas the 30 wt % Ni-coated composite delivered a relatively high capacity of 780 mA h g(P)–1. In addition, the expansion ratio of the electrode after the 30th desodiation was the lowest among the three kinds of electrodes. By contrast, cracks and exfoliation of the active material layer from the current collector were confirmed in the as-prepared black phosphorus. These results demonstrate that the upgraded performance accomplished using the 30 wt % Ni-coated composite with the Ni/Ni–P layer is due to the synergetic effects of the electron conduction channel and a buffer matrix against a large volumetric change (∼400%) in phosphorus during the charge–discharge reactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.