Abstract

Photocatalysis is a rapidly expanding technology where a diverse range of toxic chemicals can be completely degraded in water. In this study, an efficient photocatalytic method for the degradation of the aquatic pollutant, emamectin benzoate, coupled with a novel electrochemical monitoring method is reported for the first time. Photocatalytic reactions were performed in a slurry-based reactor containing either a ZnO or TiO2 photocatalyst irradiated with 365 nm UV-LEDs. Electrochemical monitoring was accomplished using Square Wave Voltammetry using a cathodically pre-treated boron doped diamond indicator electrode. Parameters such as initial pollutant concentration, solution pH and photocatalyst dosage, were investigated to optimise the process. While ZnO provided a higher initial rate of degradation than TiO2 at all concentrations investigated, the overall degradation profiles were similar. This novel technique allowed a large range of parameters to be rapidly and effectively scrutinised using electrochemical monitoring of the degradation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.