Abstract

This paper presents the development of an electrochemical model that can be implemented into automotive battery management systems (BMSs). Compared with empirical models, the electrochemical model features more accurate state estimates over a broader and longer use of the battery. In this work, model implementation schemes are devised to make the electrochemical model uncomplicated enough to be embedded into the BMS. A nonlinear system of partial differential equations in the model is discretized into a linearized system of algebraic equations (AEs). A solver selected to evaluate the resulting system of AEs is modified for its application to the BMS. As the BMS is preoccupied by its existing tasks, the reformulated equations and optimized solver are reorganized such that the limited computational resources of the BMS are appropriately exploited. The electrochemical model is consequently implemented into the BMS, predicting battery behaviors in 1s intervals while occupying a 14kB RAM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.