Abstract
A mixed aptamer-antibody sandwich assay for the determination of mucin protein 16 (MUC16) was developed based on hybridization chain reaction (HCR) with methylene blue (MB) as an electrochemical indicator. First, MUC16 antibody was adsorbed onto the surface of the Au nanoparticle (AuNP)-modified indium tin oxide (ITO) electrode to effectively capture the target MUC16. After MUC16 was captured by the MUC16 aptamer, an antibody/MUC16/aptamer sandwich structure formed for the highly selective detection of MUC16. The 3' end of the aptamer was then subjected to HCR with the assistance of auxiliary probes to obtain DNA concatemers. Numerous MB molecules bonded with G bases in the DNA concatemers by immersing the modified ITO electrode into a stirred solution containing MB with KCl. Stepwise changes in the microscopic features of the electrode surface were studied by scanning electron microscopy (SEM). Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to characterize the electrochemical behavior of the different modified electrodes. The oxidation current of MB was detected by differential pulse voltammetry (DPV). Under the optimum conditions, the proposed mixed aptamer-antibody sandwich assay showed wide dynamic range from 0.39 to 200unitmL-1 with a low detection limit of 0.02unitmL-1 (S/N ratio = 3). The proposed method showed good accuracy, selectivity, and acceptable reproducibility. Graphical abstract An electrochemical mixed aptamer-antibody sandwich assay based on the aptamer-induced HCR amplification strategy was fabricated for the highly sensitive detection of MUC16. The mixed aptamer-antibody sandwich assay showed acceptable performance of detection range, detection limit, reproducibility, and selectivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.