Abstract

Abstract This paper presents a novel micromachining approach named electrochemical wet stamping (E-WETS) for the fabrication of microstructures on metals and semiconductors. The E-WETS allows the direct imprinting of microstructures on an agarose stamp into workpiece through a selective anodic dissolution process. According to the characteristics of the E-WETS process, an optimized instrument which consists of a positioning stage and a force sensing module is developed. An orientation head is designed for the precise stamp-workpiece parallelism alignment, which ensures the uniform micropatterns on the workpiece. The technique of short voltage pulse is applied to the E-WETS to improve the surface roughness and precision of the fabricated microstructures. Experiments are conducted to investigate the influences of pulse duration on the machining performances. Then, micromachining experiments on aluminum and nickel are carried out under the optimum conditions. The experiment results indicate that the E-WETS is an effective method and the developed instrument can well meet the requirements of the E-WETS process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.