Abstract

Despite strong physical and chemical similarities between antimony and bismuth, a distinct behaviour is observed in the electrochemical magnesiation of their micrometric powders. Bismuth undergoes a complete and highly reversible alloying reaction, whereas antimony displays no electrochemical activity. Taking advantage of the complete SbBi solid solution, monophasic compositions Sb1-xBix were prepared by high-energy mechanochemical synthesis and characterized by X-ray diffraction and solid-state 25Mg nuclear magnetic resonance spectroscopy. The electrochemical magnesiation at low current rate shows a full alloying process of Sb1-xBix-based electrodes leading to monophasic Mg3(Sb1-xBix)2. This chemical association of antimony and bismuth enables a positive effect on the electrochemical magnesiation of the electrode and enables higher specific capacities compared to Bi-based electrodes. However, this synergy only operates in the nominal discharge since an irreversible capacity loss, which scales with the antimony content, is observed in the subsequent charge. Operando XRD reveals a complex segregation process leading to pure bismuth and Mg3Sb2 at the end of charge which is further rationalized by density functional theory calculations as an instability of the Mg3(Sb1-xBix)2 solid solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.