Abstract

Abstract There have been rapid advances in the development of new materials for use in electrode–tissue interfacing. The development of conducting polymers, conducting hydrogels, carbon nanotubes, graphene and other conducting materials has provided a rich landscape for controlling charge transfer at the electrode–tissue interface and hence to monitor and manipulate cell behaviour. These materials have been used in tissue-engineered constructs to direct and control cell proliferation, growth and differentiation. However, their translation to clinical devices has been less successful. In this review, the use of electroanalytical techniques to develop an understanding of charge transfer at the electrode–tissue interface is discussed. In particular, the impact of solution and electrode conditions on charge injection capacity is demonstrated. The importance of standardised testing methods and the correlation of electrochemical and electrophysiological performance show the limitations of empirical studies and help define key electrode properties for clinical devices. The development of a sound theoretical basis for charge transfer at this increasingly important interface is being advocated to improve clinical outcomes and device lifetime and reduce power usage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.