Abstract

Within the framework of these studies, an electrochemical method for the synthesis of highly dispersed powders of copper compounds in aqueous solutions of alkalis is presented. The factors influencing the rate of production of nanoscale copper (II) oxide particles are determined. It is shown that during the anodic oxidation of copper by direct current, the speed of highly dispersed powders formation depends on current density, the nature of alkali cation, and the concentration of electrolyte solution. The mass loss of copper electrodes in NaOH solution is higher than in solutions of potassium hydroxide and lithium hydroxide by 10% and 12%, respectively. This experiment suggests that the studied alkalis act similarly on the anodic behavior of copper and the nature of cation does not significantly affect the speed of anodes destruction. The change in the concentration of alkali solution practically does not affect the mass loss of copper electrodes. The speed of copper oxidation remains almost constant over time, but noticeable weight loss and, accordingly, the speed of copper dissolution is achieved within 15 minutes. The speed of copper oxidation does not depend on current density. It is determined by the amount of electricity that has passed. The current density of 1 A/cm2 can be considered optimal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call