Abstract

Achieving direct electron transfer between a biomolecule and modified electrodes is paramount for fabricating advanced biosensor devices. In this report, 1-dimensional (1D) MoO3 nanowires (NWs) were synthesized in a systematic growth evolution study. These MoO3 NWs, with the glassy carbon electrodes (GCEs), were further used as a mediatorless biosensor electrode for the detection of norepinephrine (NE) by cyclic voltammetry and chronoamperometry techniques. The MoO3 NWs/GCE had a magnificent response time of 2s in the electrochemical detection of NE, with a detection limit of 0.11μM. This excellent bio-electrochemical performance is attributed to its high catalytic activity and 1D microstructure, providing a path for electron transport and increasing their sensitivity. The MoO3 NWs/GCE also had a promising diffusion constant (D) value of 3.34×10−5cm2/s and a heterogeneous rate constant (k) of 8.03×10−4cm/s. The modified electrode possessed high stability, reproducibility, and selectivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.