Abstract

This study developed a sensor to monitor the corrosion of reinforced concrete structures. Concrete pile specimens with embedded sensors were used to obtain data on corrosion and cathodic protection for bridge columns in a real marine environment. Corrosion potential, cathodic protection current density, concrete resistivity, and the degree of depolarization potential were measured with the embedded sensors in concrete pile specimens. The cathodic protection (CP) state was accurately monitored by sensors installed in underwater, tidal, splash, and atmospheric zones. The protection potential measurements confirmed that the CP by Zn-mesh sacrificial anode was fairly effective in the marine pile environment. The protection current densities in the tidal, splash zones were 2–3 times higher than those in underwater and atmospheric zones. The concrete resistivity in the tidal and splash zones was decreased through the installation of both mortar-embedded Zn-mesh (sacrificial anode) and outside an FRP jacket (cover). Considering the CP, the cathodic prevention was more effective than cathodic protection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.