Abstract

The behavior of electrochemical lithium intercalation at graphite has been investigated in dimethyl sulfoxide (DMSO)-based electrolytes: (1) lithium salt-concentrated solutions and (2) binary solutions with dimethyl carbonate (DMC). The intercalation of DMSO-solvated lithium ion (i.e., cointercalation of DMSO) into graphite occurred during charge in 1.0 mol dm−3 LiN(SO2CF3)2/DMSO, whereas the use of a salt-concentrated solution (e.g., 3.2 mol dm−3 LiN(SO2CF3)2/DMSO) or a binary solution (e.g., 1.0 mol dm−3 LiN(SO2CF3)2/DMSO:DMC (1:4.8 by vol)) allowed for the intercalation and deintercalation of lithium ion at graphite. Raman spectra of these solutions showed that the solvation number of DMSO molecules toward lithium ion (NDMSO) decreased from 4.2 in a conventional solution to around 2 in the salt-concentrated solution and the binary solution. A comparison between the behavior of graphite and the NDMSO values has clarified that the NDMSO value of 3 is a criterion for determining whether the intercalation ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.