Abstract

Monophosphate bronze (PW8O26, WPB) was synthesized by low-temperature (650 °C) heating of 12-tungstophosphoric acid (WPA). Its lithiated derivative with a low lithium content (Li3-WPB) was synthesized by heating lithium salt of WPA at 650 °C. Its lithiated derivative with a high lithium content was synthesized by mechanochemical lithiation of Li3WPB (Lin-WPB) (n > 3), followed by heat treatment at 650 °C. X-ray powder diffraction analysis confirmed that the bronze structure changed with the increase of the incorporated lithium content. These bronzes were investigated from the aspect of lithiation/delithiation kinetics in an aqueous saturated LiNO3 electrolyte solution. By cyclic voltammetry, both the kinetics of intercalation/deintercalation and the coulombic capacity were found to decrease with the increase of initial lithium content, in agreement with literature data for electrochemically lithiated tungstophosphate bronzes. Monoclinic lithium-free bronze PW8O26, as the most promising material, was subjected to a further detailed galvanostatic investigation coupled with the LiFe0.95V0.05PO4/C composite as a cathode material in an aqueous battery. In comparison to its behavior in an organic electrolyte, a considerably lower initial capacity of the bronze electrode was measured. However, its cyclic stability was much better in an aqueous than in an organic electrolyte.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.