Abstract

Lithium cation insertion/deinsertion reaction kinetics in a LiFePO4 (LFP)/graphitic carbon composite material were electrochemically studied with a cavity microelectrode (CME). The LFP/graphitic carbon composite has a core LFP (crystalline/amorphous)/graphitic carbon shell structure. In the crystalline and amorphous LFP phase, different reaction mechanisms were observed and characterized. While the reaction mechanism in the crystalline LFP phase is controlled by Li+ diffusion, the amorphous LFP phase shows a fast, surface-controlled, pseudocapacitive charge-storage mechanism. This pseudocapacitive behavior is extrinsic in origin since it comes from the presence of Fe3+ defects in the structure. These features explain the ultrafast performance of the material which offers interesting opportunities as a positive electrode for assembling high power and high energy hybrid supercapacitors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.