Abstract

Electrochemical analytical methods have the advantages of simplicity, direct measurements, and ease of miniaturization which pave the way for real time detection and sensing. However, the complexity of living systems usually requires electrochemical sensors to display high selectivity, sensitivity, accuracy, biocompatibility and stability over time. Nanomaterials possess attractive properties in terms of surface modification, catalysis, and functionality. These open new avenues with respect to electrochemical enzymatic determination of neurochemicals such as dopamine, serotonin and ascorbate, biological small molecules such as H2O2 and metal ions such as copper(II) in-vivo. Three properties of nanomaterials make their use particularly attractive, namely the larger surface-to-volume ratio area, their unique surface, and the ease of electron transfer between enzymes and electrodes. These properties make them more sensitive, selective and stable. The article is subdivided into sections that cover applications of the following materials: carbonaceous materials (mainly carbon nanotube), noble metal particles (mainly gold and platinum particles), and semiconductor (mainly metal oxide) nanomaterials. A conclusion and outlook section addresses current chances and limitations. The review contains 99 references.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.