Abstract

Polycaprolactone (PCL) coating has been shown to increase the corrosion resistance of magnesium alloys when exposed to a simulated body fluid. A PCL dip coating was applied to AZ31 Mg alloy. Samples were immersed in both Earle’s Balance Salt Solution (EBSS) and conventional simulated body fluids (c-SBF) up to 14 days. Microscopic morphology, electrochemical impedance spectroscopy, and potentiodynamic polarization tests were performed to evaluate the corrosion behavior changes of PCL coatings against immersion times in EBSS and c-SBF as compared to the uncoated AZ31 substrate. PCL-coated samples demonstrated improved corrosion resistance compared to bare AZ31 in both EBSS and c-SBF, indicating that the PCL coating exhibited good corrosion protection of AZ31 in simulated body fluid. Samples immersed in EBSS showed significantly higher electrochemical impedance values and slower corrosion progression as compared to the samples in c-SBF, because of the decreased chloride content and CO2 buffering mechanism of the EBSS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call