Abstract
Electrochemical measurements were performed on four steels with different chromium (Cr) contents in simulated CANDU reactor coolant at room temperature to investigate the influence of chromium content on the corrosion behavior of the steels. The addition of chromium to carbon steel can promote passivation. The passive film significantly decreases the corrosion rate, and thus improves the corrosion resistance of the steels as chromium content is increased. Repassivation kinetic experiments indicate that there is a more rapid repassivation rate and a more stable passive film on steels containing a higher concentration of chromium. The slip-oxidation model was used to calculate the crack growth rate (CGR) on the steels. The 304L stainless steel has the highest CGR with an increase in potential of the steels studied. Chromium modification of steels can improve the resistance to corrosion. However, its influence on cracking and crack growth must be taken into consideration. The 2.5%Cr–1%Mo steel gave the best overall results when considering both the corrosion and the cracking behavior of the steels studied.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.