Abstract

Tuberculosis is the most frequent cause of infection-related death worldwide. A new disposable electrochemical immunosensor with low cost and simple fabrication was proposed to detect interferon-γ (IFN-γ). Diallyldimethylammonium chloride (PDDA) and Au nanoparticle (AuNP) composite were used to provide an efficient biointerface, horseradish peroxidase (HRP)-labeled antibody-conjugated AuNP (HRP-Ab2-AuNP) bioconjugates were used as a novel signal tag. The large amounts of HRP on the signal tag can catalyze the oxidation of Hydroquinone (HQ) by H2O2, which can induce an amplified reductive current. The catalytic reduction current was related to the amount of HRP immobilized on the surface, which itself was related to the concentration of IFN-γ. Under optimized conditions, the proposed immunosensor showed a high sensitivity and a linear range of 0.1–10,000pg/mL with a detection limit of 0.048pg/mL. The assay results of clinical serum samples obtained by the immunosensor were in acceptable agreement with the reference values. Therefore, the immunosensor possessed excellent clinical value in early diagnosis and control of tuberculosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.