Abstract

This study proposes the fabrication of a highly sensitive electrochemical immunosensor for label-free detection of EpCAM antigen. MXenes, novel 2D materials have become popular owing to their unique electrochemical properties. Unlike conventional immunosensors, which are unable to detect the carcinoma at primary stage and also time consuming, the use of highly conducting MXene provides a label-free and highly sensitive immunosensor. Herein, we develop a unique immunosensor, which is based on the in-situ growth of 2D-TiO2 onto the novel 2D-Ti3C2Tx sheets by hydrothermal treatment. The 2D/2D TiO2/Ti3C2Tx hybrid provides a platform having a large effective surface area, and more number of electrochemically active sites to enhance the electron transfer rate through the redox probe. The designed sensing platform, BSA/anti-EpCAM/TiO2/Ti3C2Tx@ITO shows a broad linear range (1 ag/mL to 10 ng/mL) with high sensitivity (6.661 µA ag−1 mL cm−2), and low detection limit (0.7 ag/mL) for EpCAM antigen detection under optimized conditions. The proposed immunosensor possesses good reproducibility, long-term stability, and outstanding selectivity and specificity. Moreover, the clinical applicability of the novel immunosensor is tested in spiked human serum showing good recovery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call