Abstract

An electrochemical immunosensor based on self-assembled gold nanorods on glassy carbon electrode was developed for label-free and sensitive detection of Staphylococcus aureus (S. aureus). The gold nanorods were firstly assembled on the electrode surface by using poly-(diallyldimethylammonium chloride) (PDDA) and poly-(styrenesulfonate) (PSS) as the linkers, followed by the functionlization of anti-S. aureus antibodies. The immobilized antibodies on self-assembled gold nanorods could efficiently capture S. aureus to the modified electrode by the specific immune reaction, which clearly blocked the electron transfer of electrochemical probes on the electrode surface due to the resistance of S. aureus. Atomic force microscopy and electrochemical impedance spectroscopy were used to verify the stepwise assembly of the immunosensor fabrication. The immunosensor could detect S. aureus in a linear range from 1.8 × 103 to 1.8 × 107 CFU mL−1 with a low detection limit of 2.4 × 102 CFU mL−1. Furthermore, the designed electrochemical immunosensor was successfully used to determine S. aureus in milk samples with acceptable results. The proposed immunosensor could be further expanded to sensitive detect other pathogens with the addition of specific antibodies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call