Abstract

Anelectrochemical immunosensor based on carbon nanofibers (CNFs) and gold nanoparticles (AuNPs) was developed for detectinganti-Toxoplasma gondii antibodies (anti-T. gondii) IgG in human serum. CNFs were produced using electrospinning and carbonization processes. Screen-printed carbon electrode (SPCE) surface was modified with CNFs and AuNPs which wereelectrodeposited onto the CNFs. Then, T. gondii antigen was immobilized onto the AuNPs/CNFs/SPCE. Afterward, anti-T. gondii IgG positive serum samples were coated on the modified electrode and assessed via adding anti-human IgG labeled with horseradish peroxidase (HRP) enzyme. The morphology of SPCE, CNFs, and AuNPs/CNFs/SPCE surface was characterized using field emission scanning electron microscopy (FESEM) equipped with energy dispersive spectroscopy (EDS). Characterization of CNFs was evaluated by Raman spectroscopy and X-ray diffraction (XRD). Electrochemical characterization of the immunosensor was verified using cyclic voltammetry (CV), and electrochemical response of modified electrode for anti-T. gondii IgG was detected via differential pulse voltammetry (DPV). This immunosensor was detectedin the range 0-200 U mL-1 with a low detection limit (9 × 10-3 U mL-1). In addition, the proposed immunosensor was exhibited with high selectivity, strong stability, and acceptable reproducibility and repeatability. Furthermore, there was a strong correlation between results obtained via the designed immunosensor and enzyme-linked immunosorbent assay (ELISA) as gold standard. In conclusion, the developed immunosensor isa promising route for rapid and accurate clinical diagnosis of toxoplasmosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call