Abstract

Electrochemical hydrogen-storage is one of the prominent energy storage systems. In this work, the hydrothermally synthesized copper sulfide (Cu2S) revealed a unique morphology of micro-hexagons as envisioned through scanning electron microscopy measurements. Electrochemical hydrogen storage (EHS) performance was evaluated using various electrochemical techniques, such as cyclic voltammetry, galvanostatic charge-discharge, and impedance spectroscopy measurements. The hydrogen discharge capacity of ~59.32 mAh g−1 was obtained at an applied current density of 1 A g−1. Further, the analysis of the charge-storage mechanism indicates foremost contributions from the redox processes. The prominent hydrogen storage performance is complimented with reasonable cyclic retention for 2500 cycles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.