Abstract

Thermodynamic data indicate that the oxidation of oxygenated organic species originating from biomass instead of water at the anode of an electrolysis cell should allow decreasing the cell voltage below 1.23 V. Biosourced alcohols, polyols, sugars, lignocellulosic compounds, and their derivatives are then electroreformed to produce clean hydrogen at the cathode and compounds at the anode of electrolysis cells. The reported studies highlight the main challenges to make electroreforming a future industrial process: higher reaction kinetics and hydrogen evolution rate; better selectivity of anode catalysts toward the formation of CO 2 or added-value compounds; and utilization of nonstrategical metals. An attractive solution to decrease hydrogen production costs and to make bankable other economic activities consists in directly valuing wastes from agriculture/forestry (lignocellulosic raw materials) and/or wastes from biofuel industries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call